Lien 
vers le site de l'ENS
ÉCOLE NORMALE SUPÉRIEUREPARIS
Lien vers l'accueil
lancer la recherche

» Conférences d’après mars 2011 : nouveau site

 

EALing 2006

Organisé par : Dominique Sportiche (ENS / UCLA)

Emonds (1970) observed that the core cases of movement preserve structure, in that they create configurations which can be independently generated by the fundamental structure building mechanism. The hypothesis that Move is a subcase of Merge (Internal Merge: Chomsky 2000, etc.) elegantly expresses structure preservation while reducing the computational operations. Still, the structures resulting from movement, the chains, manifest some irreducible peculiarities, first and foremost the fact that they obey certain locality principles.
In this course I would like to address the issue of locality in the broader context of the study of the nature and causes of movement. There are two basic concepts of locality that are referred to in the linguistic literature:
- Intervention: in … X … Z … Y … a local relation cannot hold between X and Y across an intervener Z, an element bearing some structural similarity to the elements involved in the local relation.
- Impenetrability: in … X … [K … Y … ], a local relation cannot hold between X and Y, with Y in impenetrable configuration K.
Relativized minimality (Rizzi 1990) is a principle of the first kind, Phase Impenetrability (Chomsky 2001, 2005) is of the second kind. There seems to be a certain division of labor between the two principles: Intervention deals with Weak Islands, while (Phase) Impenetrability deals with the obligatoriness of successive-cyclic movement in configurations not involving a visible intervener (e.g., extraction from declaratives). I would like to discuss these issues in the course, and explore some possibilities aiming at unifying the two concepts of locality.
Prerequisites: basic knowledge of syntactic theory

Ressources en ligne

  • Movement and Concepts of Locality 1/3 (le 21 septembre 2006) — Luigi Rizzi
    Emonds (1970) observed that the core cases of movement preserve structure, in that they create configurations which can be independently generated by the fundamental structure building mechanism. The hypothesis that Move is a subcase of Merge (Internal Merge: Chomsky 2000, etc.) elegantly expresses structure preservation while reducing the computational operations. Still, the structures resulting from movement, the chains, manifest some irreducible peculiarities, first and foremost the fact that they obey certain locality principles.
    In this course I would like to address the issue of locality in the broader context of the study of the nature and causes of movement. There are two basic concepts of locality that are referred to in the linguistic literature:
    - Intervention: in … X … Z … Y … a local relation cannot hold between X and Y across an intervener Z, an element bearing some structural similarity to the elements involved in the local relation.
    - Impenetrability: in … X … [K … Y … ], a local relation cannot hold between X and Y, with Y in impenetrable configuration K.
    Relativized minimality (Rizzi 1990) is a principle of the first kind, Phase Impenetrability (Chomsky 2001, 2005) is of the second kind. There seems to be a certain division of labor between the two principles: Intervention deals with Weak Islands, while (Phase) Impenetrability deals with the obligatoriness of successive-cyclic movement in configurations not involving a visible intervener (e.g., extraction from declaratives). I would like to discuss these issues in the course, and explore some possibilities aiming at unifying the two concepts of locality.
    Prerequisites: basic knowledge of syntactic theory
  • Movement and Concepts of Locality 2/3 (le 22 septembre 2006) — Luigi Rizzi
    Emonds (1970) observed that the core cases of movement preserve structure, in that they create configurations which can be independently generated by the fundamental structure building mechanism. The hypothesis that Move is a subcase of Merge (Internal Merge: Chomsky 2000, etc.) elegantly expresses structure preservation while reducing the computational operations. Still, the structures resulting from movement, the chains, manifest some irreducible peculiarities, first and foremost the fact that they obey certain locality principles.
    In this course I would like to address the issue of locality in the broader context of the study of the nature and causes of movement. There are two basic concepts of locality that are referred to in the linguistic literature:
    - Intervention: in … X … Z … Y … a local relation cannot hold between X and Y across an intervener Z, an element bearing some structural similarity to the elements involved in the local relation.
    - Impenetrability: in … X … [K … Y … ], a local relation cannot hold between X and Y, with Y in impenetrable configuration K.
    Relativized minimality (Rizzi 1990) is a principle of the first kind, Phase Impenetrability (Chomsky 2001, 2005) is of the second kind. There seems to be a certain division of labor between the two principles: Intervention deals with Weak Islands, while (Phase) Impenetrability deals with the obligatoriness of successive-cyclic movement in configurations not involving a visible intervener (e.g., extraction from declaratives). I would like to discuss these issues in the course, and explore some possibilities aiming at unifying the two concepts of locality.
    Prerequisites: basic knowledge of syntactic theory
  • Movement and Concepts of Locality 3/3 (le 23 septembre 2006) — Luigi Rizzi
    Emonds (1970) observed that the core cases of movement preserve structure, in that they create configurations which can be independently generated by the fundamental structure building mechanism. The hypothesis that Move is a subcase of Merge (Internal Merge: Chomsky 2000, etc.) elegantly expresses structure preservation while reducing the computational operations. Still, the structures resulting from movement, the chains, manifest some irreducible peculiarities, first and foremost the fact that they obey certain locality principles.
    In this course I would like to address the issue of locality in the broader context of the study of the nature and causes of movement. There are two basic concepts of locality that are referred to in the linguistic literature:
    - Intervention: in … X … Z … Y … a local relation cannot hold between X and Y across an intervener Z, an element bearing some structural similarity to the elements involved in the local relation.
    - Impenetrability: in … X … [K … Y … ], a local relation cannot hold between X and Y, with Y in impenetrable configuration K.
    Relativized minimality (Rizzi 1990) is a principle of the first kind, Phase Impenetrability (Chomsky 2001, 2005) is of the second kind. There seems to be a certain division of labor between the two principles: Intervention deals with Weak Islands, while (Phase) Impenetrability deals with the obligatoriness of successive-cyclic movement in configurations not involving a visible intervener (e.g., extraction from declaratives). I would like to discuss these issues in the course, and explore some possibilities aiming at unifying the two concepts of locality.
    Prerequisites: basic knowledge of syntactic theory

Organisateurs

Dominique_Sportiche

Dominique Sportiche (ENS / UCLA)

professeur associé au Département d’études cognitives de l’ENS, professeur à l’Université de Californie à Los Angeles (UCLA), linguistique.

En savoir plus sur le cycle...


Cours et séminaires d’enseignement

À partir de l’incomplétude : indécidabilité logique et aléatoire physique

Atelier : Les méthodes de datation en archéologie

Atelier Apprentissage 2006–2007

Atelier Mathématiques et biologie 2006–2007

Comique et connaissance : de Filippo Brunelleschi à Giordano Bruno

Conférences de philosophie à l’École normale supérieure : La neuro-éthique

Conférences sur l’histoire de l’animal dans l’Antiquité

Construction de bases localisées adaptées à la géométrie. Applications : statistique, étude de CMB (fonds diffus cosmologique)

Cours d’automne 2009 du Département de physique

Cours d’histoire médiévale : Les villes italiennes au Moyen Âge

Cours d’initiation à l’histoire médiévale

Cours de chimie des lanthanides

Cours de Jonathan Culler : Théorie de la poésie lyrique

Cours de l’ENS : Cours de géophysique

Cours de l’ENS : Mini-cours de mathématiques

Cours de licence de biologie : communautés-écosystèmes

Cours de licence de biologie : comportement-populations

Cours du Département de physique : Ordres de grandeur en physique

Cours sur l’innovation dans l’art moderne et sa géographie

EALing 2004

EALing 2004

EALing 2004

EALing 2004

EALing 2004

EALing 2004

EALing 2005

EALing 2005

EALing 2005

EALing 2005

EALing 2005

EALing 2005

EALing 2005

EALing 2005

EALing 2005

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

Histoire de la photographie

Histoire transnationale des organisations internationales en Occident

Journée L’action : Délibérer, décider, accomplir

Journée La classification : Problèmes logiques et épistémologiques

La distribution des nombres premiers

Les singularités et leur résolution

Polémiques dans la République des Lettres : querelles, disputes et controverses autour de la figure de Jean-Jacques Rousseau

Séminaire d’histoire et philosophie des sciences : Chimie, science et société

Séminaire de philosophie : Ricoeur et Derrida dans le contexte de la philosophie du "témoignage"

Séminaire de philosophie : The Cognitive Uses of Causal Order

EALing 2006 - École d’automne de linguistique

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

Ecoles d’été

École d’été bio-image

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

EALing 2006

Ecole d’été Langues et langage : compréhension, traduction, argumentation

Summer School of Mathematics "Berkovich Spaces"