vers le site de l'ENS
Lien vers l'accueil
lancer la recherche

» Conférences d’après mars 2011 : nouveau site


Journée Mathematical Foundations of Learning Theory

< précédent | suivant >

Learning from Dependent Observations
Ingo Steinwart (Los Alamos National Laboratory)

1er juin 2006

The standard assumption in statistical learning theory is that the available samples are realizations of i.i.d. random variables. However, in many applications this assumption cannot be rigorously justified, in particular if the observations are intrinsically temporal. In this talk I will present some recent results on the learnability of rather general observation-generating random processes. In particular, I will establish a weak consistency result for support vector machine classification and regression. In addition, refined results for e.g. α-mixing processes will be presented. If time permits I will finally discuss whether the behaviour of certain dynamical systems can be learned.

pictogrammeformat pdf - 1.32 Mo

pictogrammeformat audio mp3 - ??? (erreur acces)

- Visualiser
- Télécharger
pictogrammeformat quicktime mov, vidéo à la demande

pictogrammeformat mp4, vidéo à télécharger - 128.37 Mo

pictogrammeformat windows media video - 74.24 Mo

Ingo Steinwart Ingo Steinwart (Los Alamos National Laboratory)
Machine Learning & Pattern Recognition Team in the Modeling, Algorithms, and Informatics Group