Lien 
vers le site de l'ENS
ÉCOLE NORMALE SUPÉRIEUREPARIS
Lien vers l'accueil
lancer la recherche

» Conférences d’après mars 2011 : nouveau site

1438

Journée Mathematical Foundations of Learning Theory

< précédent | suivant >

Learning from Dependent Observations
Ingo Steinwart (Los Alamos National Laboratory)

1er juin 2006

The standard assumption in statistical learning theory is that the available samples are realizations of i.i.d. random variables. However, in many applications this assumption cannot be rigorously justified, in particular if the observations are intrinsically temporal. In this talk I will present some recent results on the learnability of rather general observation-generating random processes. In particular, I will establish a weak consistency result for support vector machine classification and regression. In addition, refined results for e.g. α-mixing processes will be presented. If time permits I will finally discuss whether the behaviour of certain dynamical systems can be learned.

Télécharger
pictogrammeformat pdf - 1.32 Mo

Écouter
pictogrammeformat audio mp3 - ??? (erreur acces)

- Visualiser
- Télécharger
pictogrammeformat quicktime mov, vidéo à la demande

Télécharger
pictogrammeformat mp4, vidéo à télécharger - 128.37 Mo

Télécharger
pictogrammeformat windows media video - 74.24 Mo

Ingo Steinwart Ingo Steinwart (Los Alamos National Laboratory)
Machine Learning & Pattern Recognition Team in the Modeling, Algorithms, and Informatics Group